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the Boussinesq approximation r is constant, while in the
anelastic approximation r is a known function of height z.This paper presents a new forward-in-time advection method for

nearly incompressible flow, MU, and its application to an adaptive For many flows, a ‘‘multilevel’’ scheme that incorporates
multilevel flow solver for atmospheric flows. MU is a modification regions of higher grid refinement in time and space can
of Leonard et al.’s UTOPIA scheme. MU, like UTOPIA, is based on be advantageous to track localized fine-scale flow features.third-order accurate semi-Lagrangian multidimensional upwinding

Advection schemes should ideally be efficient, highlyfor constant velocity flows. For varying velocity fields, MU is a
second-order conservative method. MU has greater stability and accurate, preserve in discrete form the conservation laws
accuracy than UTOPIA and naturally decomposes into a monotone governing the advected quantities, and be ‘‘monotone’’
low-order method and a higher-order accurate correction for use (not introduce spurious overshoots and undershoots). Dif-
with flux limiting. Its stability and accuracy make it a computation-

ferent types of advection schemes have evolved in responseally efficient alternative to current finite-difference advection meth-
to these requirements. Centered ‘‘leapfrog’’ differencingods. We present a fully second-order accurate flow solver for the

anelastic equations, a prototypical low Mach number flow. The flow in space and time, long popular for atmospheric applica-
solver is based on MU which is used for both momentum and scalar tions, is simple and second-order accurate, but it is prone
transport equations. This flow solver can also be implemented with to large numerical overshoots and must be time-filteredany forward-in-time advection scheme. The multilevel flow solver

for stability. Semi-Lagrangian methods [30, 32] have alsoconserves discrete global integrals of advected quantities and in-
cludes adaptive mesh refinement. Its second-order accuracy is veri- been proven attractive for scalar advection, primarily due
fied using a nonlinear energy conservation integral for the anelastic to their stability and accuracy properties. However, they
equations. For a typical geophysical problem in which the flow is are not conservative. ‘‘Forward-in-time’’ methods [13, 16,
most rapidly varying in a small part of the domain, the multilevel

17, 24, 29] which use only the most recent time level toflow solver achieves global accuracy comparable to a uniform-reso-
advance to a new time level are more complex than leap-lution simulation for 10% of the computational cost. Q 1996 Academic

Press, Inc. frog schemes (especially for solving the momentum equa-
tions subject to mass conservation), but they are more
accurate and stable. These schemes are increasingly being

1. INTRODUCTION used, both for complete flow solvers and hybrid solvers,
where a leapfrog method is used for the momentum equa-Many geophysical flows, such as boundary layer turbu-
tions and a forward-in-time scheme is used for advectinglence, convection, and topographically forced flows, are
scalars [4, 27].nearly incompressible and nonhydrostatic. The simulation

The first goal of this paper is to present a more accurateof such flows requires the accurate solution of scalar advec-
and efficient forward-in-time advection scheme. Its supe-tion equations
rior accuracy and efficiency are due to improved third-
order upwinding that is semi-Lagrangian for constant ve-
locity flows. It is based on finding the fluxes through faces­c

­t
1

1
r

= ? (rUc) 5 R, (1)
of a control volume that would be associated with the back-
trajectories of all points within that control volume. The

with source term R and velocity field U that obey a continu- resulting algorithm is then generalized to a variable veloc-
ity equation of the form ity flow by writing it in Eulerian flux form. The flux form

ensures discrete conservation of advected scalars and can
= ? (rU) 5 0, (2) be flux corrected [10, 35] to maintain monotonicity. Several

advection schemes using similar approaches have recently
been proposed. Collela [13] developed a two-dimensionalwhere r is some approximation to the fluid density. In

284
0021-9991/96 $18.00
Copyright  1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.



ADAPTIVE MULTILEVEL SOLVER FOR ATMOSPHERIC FLOW 285

algorithm, CTU (corner transport upwind), by integrating This paper first derives MU and discusses its perfor-
mance, followed by its extension to a multilevel flow solver.the characteristics passing through a two-dimensional face.

This algorithm was later extended by Saltzman [24] to In Section 2, we present our forward-in-time advection
method and analyze its monotonicity, accuracy, and stabil-three dimensions. Leonard et. al. [16] derived a three-

dimensional method, UTOPIA (uniform third-order poly- ity properties. Comparisons of this method with other
methods are also made. The advection method is general-nomial interpolation algorithm) by decomposing into flux

form a semi-Lagrangian method that has additional multi- ized to a flexible flow solver for the anelastic equations
and tested in Section 3. An adaptive multilevel flow solverdimensional or transverse terms to eliminate third-order

errors. UTOPIA is third-order accurate for constant veloc- and applications are shown in Section 4.
ity flow, but it has a reduced stability region. LeVeque [17]
proposed a similar algorithm, interpreting the multidimen- 2. ADVECTION METHOD
sional terms as correction waves propagating transversely

Advection can be modelled in an Eulerian manner byto the grid. Our proposed method, ‘‘modified UTOPIA,’’
determining the tendency of a gridpoint as the convergenceor MU, is an extension of UTOPIA that uses additional
of normalized fluxes through cell facestransverse correction terms for improved accuracy while

retaining the superior stability of CTU.
A particularly attractive application of forward-in-time

c n11
p 5 cp 2

1
rp

(Fe 2 Fw 1 Fn 2 Fs 1 Ft 2 Fb), (3)methods is adaptive multilevel flow solvers, in which the
finite difference grid is refined in selected regions that may
be adaptively changed in time to follow evolving features. where superscripts are dropped for values at tn and the
Multilevel models with fixed, nonadaptive grids have been subscript letters indicate position in the compass point
commonly used in meteorological applications during the notation of the Appendix. This formulation ensures that,
past 15 years and recently have become adaptive [28]. Most except for boundary fluxes, the integral of c over an arbi-
such models are based on compressible fluid equations. trary region is conserved. The normalized fluxes for this
For troposphere-deep convection or gravity waves, for algorithm are computed by integrating the characteristics
which the Mach number is 0.1–0.2, compressible models that impinge on a cell face over a timestep and dividing
are easier to implement and comparably efficient and accu- by the cell volume. For flow with constant velocity (u, v,
rate to models which are based on the anelastic or Bous- w) and density r, the flux for the eastern cell face normal
sinesq approximation. However, an anelastic model is to the positive x direction is expressed as
much more efficient than a compressible model for model-
ling very low Mach number (0.01) flows such as atmo-
spheric boundary layer turbulence. Because anelastic mod- Fe 5
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, y, z, tn 1 tD dy dz dt
els are somewhat more difficult to implement, their
popularity in the atmospheric sciences has largely been
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(4)restricted to simulating the atmospheric boundary layer
[19, 20, 25]. Most of these models have not incorporated the
added complexity of multilevel refinement. An important

3 c SDx
2

2 ut, y 2 vt, z 2 wt, tnD dy dz dt.exception is the model of Clark and Farley [12], perhaps
the most broadly applied atmospheric model based on
the anelastic equations. To date, no adaptive multilevel

We have expressed the flux as an integral that only involvesanelastic model has been routinely used for simulating
c at time n. This approach is equivalent to that of Saltzmanatmospheric flows, despite the existence of many flows for
[24] and similar to that of LeVeque [17].which this type of model is advantageous and the existence

In our algorithm, c is approximated as the sum of a low-of at least one such solver [1] that has been developed for
order representation clo and a correction term cc. If usedother applications.
alone clo would give a monotonic, highly stable, but onlyHence, the second goal of this paper is to present a new
first-order accurate advection scheme. Thus, flux-limiting,anelastic flow solver for nearly incompressible fluid flow
if desired, can be performed on cc. The flux is correspond-that incorporates adaptive multilevel refinement. It is pat-
ingly decomposed asterned on [1], but it has different grid staggering and a

simpler algorithm for maintaining mass continuity. The
Fe 5 F lo

e 1 F c
e. (5)boundary conditions at the edge of refined grids and the

algorithms for transferring fields between grids follow
Clark and Farley [12]. Our solver is based around MU but Our low-order representation is a bilinear interpolation

between upwind cell values in the transverse directionscan be used with any forward-in-time scheme.
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and is constant in the normal direction. For the case u, v, The corrective factor is needed, since the time tendency
of a cell average ccell is different from that of the cell center,w . 0, this choice of upwinding yields

ct 5 (ccell)t 2
Dx2

24
cxxt 2

Dy2

24
cyyt 2

Dz2

24
czzt . (11)clo(x) 5 cp 1 y

cp 2 cs

Dy
1 z

cp 2 cb

Dz
(6)

When integrated for constant velocity flows, this represen-1 yz
cp 2 csb 2 cs 2 cb

Dy Dz
.

tation yields a third-order accurate flux which can be shown
to be algebraically identical to UTOPIA, by use of a dis-
crete version of the identity (cyy)x 5 (cxy)y ,When integrated in (4), this representation yields the flux

(cn 2 2cp 1 cs) 2 (cnw 2 2cw 1 csw)
(12)

F lo
e 5 nxnp 2

nxny

2
(cp 2 cs) 2

nxnz

2
(cp 2 cb)

(7)
5 (cn 1 cw 2 cp 2 cnw)2 (cp 1 csw 2 cw 2 cs).

which states that the effect of the cyy representation in
1

nxnynz

3
(cp 1 csb 2 cs 2 cb), the x direction flux is equivalent to the effect of the cxy

representation in the y direction flux. One can considerably
simplify the algebraic form of the flux and the multidimen-where (nx , ny , nz) is the vector of Courant numbers (uDt/
sional stability of the method by adding higher order cor-Dx, vDt/Dy, wDt/Dz). We will show that this flux is mono-
rection terms to (10). We added the (xyz, x2y, x2z, andtonic even for spatially varying flows and has the optimal
x2yz) terms in the Taylor series of c(x, y, z) and usedstability of a nearest neighbor algorithm.
the natural discretizations of the corresponding derivativesThis method can be made second-order accurate by in-
cxyz , cxxy , cxxz , and cxxyz . The difference between this fluxcluding a normal slope correction to our representation of
and the low order flux is the corrective fluxc as in other methods [13, 17, 24, 29],

F c
e 5

nx

2
(1 2 nx)(ĉe 2 ĉp) 2

nx

6
(1 2 n2

x)(ĉe 2 2ĉp 1 ĉw),
cc(x, y, z) 5 x

ce 2 cp

Dx
. (8)

(13)

The corresponding corrective flux is where the ĉ quantities are given by bilinear interpolation
in y and z,

F c
e 5

nx

2
(1 2 nx)(ce 2 cp). (9) ĉp 5 cp(1 2 ny)(nz) 1 cb(ny)(nz) (14)

1 csb(1 2 ny)(1 2 nz) 1 cs(ny)(1 2 nz).

This correction was found to be unstable for three-dimen-
This corrective flux is equivalent to bilinearly interpolatingsional flow directions, but it can be stabilized and improved
the correction needed to cancel the leading second-orderby adding higher order terms. Our strategy for improving
error terms of Lax–Wendroff. It will be shown that thisthe corrective flux was to use the natural second-order
method has the same stability as the low order method.expansion of c, modified by a corrective factor,
In the Appendix, a simple technique for computing the
low order and corrective fluxes for variable density and
velocity is presented.c(x,y,z)5cp 1x

ce 2cw

2Dx
1y

cn 2cs

2Dy
1z

ct 2cb

2Dz For constant velocity flow, the low-order method (Fig.1)
can be viewed as a semi-Lagrangian method in which the

1
x2

2
ce 22cp 2cw

Dx2 1
y2

2
cn 22cp 2cs

Dx2 value of the scalar at its departure point (xo , tn) is comput-
ing by trilinear interpolation between neighboring grid-
point values. Trilinear interpolation ensures that c(xo , tn)

1
z2

2
ct 22cp 2cb

Dx2 1xy
ce 1cs 2cse 2cp

DxDy
(10)

lies between the maximum and minimum c of surrounding
gridpoints, guaranteeing monotonicity. For nondivergent
variable-velocity flow, the low-order method can be written1xz

ce 1cb 2cbe 2cp

DxDz
1yz

cp 1csb 2cs 2cb

DyDz

c n11
p 5 a1cp 1 a2cs 1 a3cw 1 a4cb 1 a5csw 1 a6cwb (15)2

1
24

(ce 1cn 1ct 26cp 1cw 1cs 1cb).
1 a7csw 1 a8cswb ,



ADAPTIVE MULTILEVEL SOLVER FOR ATMOSPHERIC FLOW 287

are still possible. This is corrected by using the Zalesak [29,
35] flux limiter. This flux limiter is a true multidimensional
limiter that takes into account the total flux entering or
leaving a cell. This is an improvement over applying one-
dimensional flux limiters in the different normal directions.
In a multidimensional flow, one-dimensional limiting can-
not account for multiple fluxes acting in concert to cause
numerical oscillations.

For advection at a constant velocity, the stability of this
method can be analyzed using von Neumann analysis. This
analysis measures the change in amplitude of a Fourier
component

c n
î, ĵ,k̂ 5 exp(i(uxî 1 uy ĵ 1 uzk̂)),

i 5 Ï(21), (18)

2f # (ux , uy , uz) # f,

undergoing advection. The resulting field can be written
in terms of a complex amplification factor ĉ such that

FIG. 1. The MU stencil for the case u, v, w . 0. The low order c n11
î, ĵ,k̂ 5ĉ(nx ,ny ,nz ,ux ,uy ,uz)exp(i(uxî1uy ĵ1uzk̂)), (19)

method uses trilinear interpolation about the eight labeled dark points
which contain the departure point. The high order correction uses the

where (ux , uy , uz) are the wavenumbers allowed on theadditional points indicated by hollow circles.
grid weighted by the grid spacing in each direction. The
stability of any linear method for a given velocity can be
found by looking at the maximum magnitude of ĉ over all

where the weights ai are positive. One can show for diver- wavenumbers (ux , uy , uz),
gence-free velocities that

S(nx , ny , nz) 5 max(uĉ(nx , ny , nz , ux , uy , uz)u). (20)

O8
k51

ak 5 1 1 ah2, (16)
It is possible to derive a compact formula for the ampli-

fication factor of the low order method and thereby analyze
from which we deduce its stability,

uc n11
p u # (1 1 ah2) max(uci u), (17) ĉ 5 (1 2 nx(1 2 e2iux))(1 2 ny(1 2 e2iuy))(1 2 nz(1 2 e2iuz)).

(21)
where a is identically zero for the constant velocity case
and h 5 max(Dx, Dy, Dz). This inequality is the maximum Each of the terms in ĉ are #1 in magnitude, unless nx , ny ,

or nz . 1. This indicates that this method is stable for theprinciple observed by Saltzman [24] and implies that the
variation of the solution remains bounded. cube, 0 # nx , ny , nz # 1. ĉ has a magnitude that drops off

steeply for nonzero wavenumbers. In general, it is notFor constant velocity flow, the high-order method can
be viewed as a semi-Lagrangian method with a multidimen- possible to derive such a useful analytical formula for S,

even when ĉ is known. However, knowing ĉ, an estimate ofsional cubic interpolation stencil (Fig. 1) centered about
xo . The cubic stencil consists of the eight dark points used S can be found by numerically iterating over the complete

range of wavenumbers (ux , uy , uz) for a given Courantin the low-order method plus the additional 24 hollow
points surrounding them. This stencil is highly isotropic number. The resulting S can then be plotted as a function

of Courant number. A method is stable in the regionwith respect to the center of the upstream cube. Corre-
spondingly, MU is almost equally accurate for flow in an bounded by the origin and the isosurface S 5 1. The

method with only the normal slope correction (Fig. 2b) isarbitrary direction. Furthermore, the cubic stencil has the
same stability properties as the low-order method. By using stable for all two-dimensional, but not all three-dimen-

sional velocities inside the unit cube of Courant numbers.cubic interpolation, the method has less dispersion than
traditional second-order methods. Although this method The stability region includes the two-dimensional nx 2 ny ,

nx 2 nz , and ny 2 nz unit squares, but it excludes a large,is less dispersive, numerical undershoots and overshoots
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FIG. 2. The three-dimensional stability regions for the low order method with the third-order corrective flux (a) and with only the normal slope
correction (b). The coordinate axes are Courant number in x, y, and z. The isosurfaces bound the region (including the origin) in which the method
is stable. The low order method also has the stability region shown at the left.

roughly tetrahedral volume which includes very small test flow was one full solid body rotation about a vector
extending from the origin to the corner (1, 1, 1) of the unitCourant numbers in the (1, 1, 1) direction. The stability

region for MU (Fig. 2a) is given by the cube, 0 # nx , ny , cube with an angular velocity of V 5 2f. From this velocity
field, we can compute analytical solutions for any choicenz # 1. The stability region of the upwind, leapfrog, and

UTOPIA methods is shown in Fig. 3 for comparison. These of initial condition. The initial scalar concentrations were
chosen to start and remain zero near the boundaries ofmethods have smaller stability regions of the form 0 #

nx 1 ny 1 nz # 1. This is a substantial advantage of our the unit cube which bounded the numerical domain.
Hence, the periodic boundary conditions applied to themethod for use in three-dimensional flow solvers.

We compared the accuracy of MU with existing methods scalar concentrations had negligible impact on the solution.
The error after one rotation was measured using the 1-by advecting both smooth and nonsmooth initial conditions

in a spatially varying three-dimensional flow field. Our norm defined by

iei1 5
1
n3 O

i, j,k
uei, j,ku, (22)

where ei, j,k was the error of the solution at gridpoint (i, j,
k). The domain had n gridpoints in each direction and the
sum was over all gridpoints in the domain. In our advection
tests, we used a uniform spatial step h 5 1/n and timestep
Dt 5 h/12 unless otherwise indicated. The maximum
Courant number in all three coordinate directions, 0.26,
was achieved at the vertices of the cube that were off the
rotation axis. At these points, the timestep is 78% of the
stability limit of all the methods considered, except for
MU, for which the timestep is only 26% of the stability
limit. Thus, we also tested the accuracy of MU when the
timestep was tripled. Note that this test produces a particu-
larly large disparity between the maximum stable timestep
for MU and for the other methods, because of the flowFIG. 3. The three-dimensional stability region for the MPDATA,

UTOPIA, leapfrog, and upwind algorithms. direction and domain geometry. In general, the maximum
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vergence (Fig. 5a), except MPDATA, which was only 1.8-
order accurate for this test due to the nonlinear advection.
MU had the smallest overall error. UTOPIA had a 10%
larger error, MPDATA had a fourfold larger error, and the
leapfrog and leapfrog-trapezoidal methods had a sixfold
larger error than MU at the highest grid resolution. We
also see from Fig. 5a that MU’s error does not increase
when the timestep is tripled. For the leapfrog methods and
MPDATA, on the other hand, the timestep used in the
advection tests was approximately 78% of the stability limit
and could not be appreciably increased without instabilities
developing in corners of the domain. For UTOPIA, insta-
bilities did not grow to large amplitude when the timestep
was tripled. However, fine-scale variability in the solution
was noticeable, and the error increased fourfold with the
increased timestep. For nonsmooth initial data (Fig. 5b),
MU and UTOPIA had similar errors. MPDATA had 15%FIG. 4. The initial condition for the nonsmooth advection test.
larger errors, while the leapfrog and leapfrog-trapezoidal
methods had 55% and 40% larger errors, respectively.
Again, MU’s errors are unaltered when the timestep is
tripled, while the other methods become unstable. This is
a substantial advantage for using MU in terms of computa-stable timestep will be dependent on the flow direction
tional efficiency.and the stability limit of MU will be 1–3 times as large.

We have shown that MU achieves superior accuracyWe determined the relative performance of each method
with a larger timestep than the other methods. The utilityby comparing the logarithmic error convergence as a func-
of an advection scheme depends on the number of floatingtion of the mesh spacing h. A spherical Gaussian initial
point operations (flops) and storage required to achieve acondition was used to verify the second-order convergence
given global accuracy for a field that is advected over aof the methods,
fixed period of time. For MU, UTOPIA, and MPDATA,
approximately 30 flops are required to evaluate the flux

c(x, 0) 5 exp(216((x 2 Df)2 1 (y 2 Af)2 1 (z 2 Af)2)). (23) through each face, while for the leapfrog schemes, six flops
(only 20% as much) are required. An additional time level
of storage is required for the leapfrog methods. For theTo test the performance on a nonsmooth field, we used a
smooth advection tests with grid spacing h, a global errorthree-dimensional sphere of uniform concentration 1 cen-
after one revolution of approximately Ah2 was achievedtered at (Df, Af, Af) with radius 0.25 with a rectangular wedge
using Bh24 flops and Ch23 storage, where A, B, and C areof width 0.20 and depth 0.42 removed in the (21, 1, 1)
method-dependent constants. To reduce the error belowdirection. This test (Fig. 4) is a three-dimensional analog
« requires BA2«22 flops and CA3/2«23/2 storage. Thus theto the familiar slotted disk test [29, 35].
computational effort is proportional to BA2 and the storageThe error convergence of MU was compared with popu-
is proportional to CA3/2. In the advection test shown inlar advection methods currently used in small-scale atmo-
Fig. 5a, A was six times as large for the leapfrog schemespheric models: leapfrog [27], leapfrog-trapezoidal [35],
as for MU. For the same timestep, B is only 20% as largeUTOPIA, and Smolarkiewicz’s MPDATA [29].
for the leapfrog scheme, while C is at least as large. ThisMPDATA (multidimensional positive definite advection
lower B is partially compensated by the fact that the maxi-transport algorithm) is a nonlinear predictor–corrector
mum stable timestep is 1–3 times larger for MU, dependingmethod that ensures that scalars cannot become negative
on the advection direction. Assuming a timestep for MUas a result of advection errors. As scalar values approach
that is Ï3 as large as for leapfrog, B is Ï3/5 5 0.35 aszero, MPDATA becomes more diffusive and less accurate.
large for the leapfrog scheme. Hence, the computationalWe added a constant of 100 to the scalar values. This
effort and storage requirements for a given accuracy arepreserves the maximum possible accuracy of MPDATA,

although it disables the positivity preservation and causes 62Ï3/5 5 12 and 6Ï6 5 15 times, respectively, as large
as for MU. Similarly, from Fig. 5a, the computational efforta loss of two significant digits in machine precision due to

the need to subtract large and nearly equal quantities. is 2 (27) times as large for UTOPIA (MPDATA) as for
MU, and the storage requirements are 1.15 (8) as large.For smooth initial data, no flux correction or temporal

filtering was used. All methods showed second-order con- For the nonsmooth advection tests, if we assume the global
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FIG. 5. Comparison of error convergence for flux-corrected Robert–Asselin filtered leapfrog (L), trapezoidal-leapfrog (T), MPDATA (S),
UTOPIA (U), MU (M), and MU with threefold larger timestep (E). The plots show the 1-norm error after one rotation for smooth (a) and for
nonsmooth (b) initial data.

error of all methods is approximately Ah0.7, the computa- where the scaled pressure perturbation f 5 p9/r is often
referred to as the Exner function, r is the density associatedtional effort scales as BA5.7 and the storage requirements

as CA4.3. Furthermore, B is similar for the leapfrog and with an isentropic base state of uniform potential tempera-
ture u, and u* is the scaled perturbation u* 5 (u 2 u)/u.MU methods. After flux correction and time-filtering, the

leapfrog methods required 60–80% as long per gridpoint In (24), there are two source terms, pressure gradients and
buoyancy. In our flow solver, source terms are incorporatedper timestep as MU on a DEC Alpha-series workstation.

This is compensated by MU’s larger allowable timestep. using the second-order accurate method of Smolarkiewicz
and Pudykiewicz [30] and Smolarkiewicz and MargolinFigure 5b suggests that the computational effort required

by UTOPIA, MPDATA, and leapfrog schemes are respec- [31]. This treatment, semi-Lagrangian in spirit, is a form
of Strang splitting [34] and is easily generalized to handletively 1.8, 4, and 8 times as large and the storage require-

ments are 1, 2, and 8 times as large. Considering advection additional sources and advection equations for other quan-
tities such as moisture.of both smooth and nonsmooth initial data, MU was com-

putationally more efficient than the other schemes tested. The anelastic equations are a coupled system of the form
(1) that can be represented using Stoke’s theorem as

3. INCOMPRESSIBLE FLOW SOLVER
c(x, tn11) 5 c(xo , tn) 1 E

T
Rdt, (25)

The simulation of nonhydrostatic atmospheric flows re-
quires a general framework for the inclusion of physical

where T is the trajectory of a fluid parcel. This equationprocesses involving source terms. This section presents an
is approximated by advecting the quantity c 1 DtR/2 withalgorithm for integrating the inviscid dry anelastic equa-
MU and using the integration ruletions [21],

c(x, tn11) 5 A Sc(xo , tn) 1
Dt
2

R(x, tn), n n11/2D
(26)

­ut

­t
1

1
r

= ? (rUui) 5 2
­f

­xi
1 di3gu*,

1
Dt
2

R(x, tn11),­u

­t
1

1
r

= ? (rUu) 5 0, (24)

= ? rU 5 0, where we denote MU as the advection operator A. This
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rule eliminates the need to compute R(xo , tn) and rithm of Bell and Marcus [5]. This method differs from
theirs in that the quantities fn11/2 and n n11/2 used in advec-c(xo , tn) separately. Symbolically, we can integrate the

anelastic equations (24) via tion are the only values calculated at tn11/2. Another
method presented by Smolarkiewicz and Margolin [31] for
evaluating n n11/2 is via the extrapolation n n11/2 5 1.5n n 2u*n11 5 A(u*n, n n11/2)
0.5n n21. This eliminates the expense of the first Poisson
solve at the expense of limiting the Courant number toun11

i 5 A Sun
i 1

Dt
2 Sdi3Bn 2

­fn

­xi
D , n n11/2D (27)

less than As.
Maintaining a discrete analogue to mass conservation

was a strong priority in the design of the solver. It uses1
Dt
2 Sdi3Bn11 2

­fn11

­xi
D .

the MAC (marker and cell) formulation of Harlow and
Welch [15], where the velocities are staggered one half

This requires the evaluation of Courant numbers n n11/2 gridpoint in the normal direction. This formulation, also
and ‘‘pressures’’ fn11/2 and fn11. The pressure can be inter- known as the Arakawa C-grid [2], was chosen because
preted as the potential or projection [11] that adjusts the natural discretizations of pressure gradient and divergence
velocities to preserve mass continuity. We insist that the in (24) lead to the standard seven-point stencil for the
velocities at tn11/2 and tn11 both satisfy mass continuity, three-dimensional Laplacian. If nonstaggered grids for ve-
requiring two Poisson solves per timestep. The full solution locity [5, 11] and centered differences for pressure gradi-
of (27) proceeds as follows: ents and divergence are used, adjacent gridpoints can de-

couple. An alternative approach [1, 26, 36] is to use
1. Calculate the momentum forcing at tn. If this is the nonstaggered velocities, but to interpolate them to the

start of the simulation, a Poisson solve is necessary. MAC grid at half-time levels.
2. Use the momentum equation to compute a midpoint The inviscid anelastic equations with uniform stratifica-

velocity at tn11/2, accurate to first order. The Courant num- tion have a locally conserved energy integral
bers and buoyancy have been replaced by their values at
tn. However, for stability it is necessary to exactly preserve

E 5 E
V

r SuUu2

2
1

(gu0/Nu)2

2 D dV, (31)discrete mass continuity, so we require a Poisson solve for
fn11/2 to ensure that ui

n11/2 is nondivergent:

where N 5 Ïg­u9/u­z is the Brunt–Väisälä frequency and
u is expressed as the sum of a base state, uniform stratifica-un11/2

i 5 A Sun
i 1

Dt
4 Sdi3Bn 2

­fn

­xi
D , nnD

(28) tion, and dynamic perturbation:

u 5 u 1 u9(z) 1 u0(x). (32)1
Dt
4 Sdi3Bn 2

­fn11/2

­xi
D .

When integrated over a domain V with rigid or periodic
3. Compute the advection of u* using the midpoint boundary conditions, E is conserved. A bubble collapse

velocities, where n n11/2 is the vector of Courant numbers experiment similar to that of Orlanski [22] and Clark and
associated with ui

n11/2: Farley [12] was performed to test the energy conservation
properties of the flow solver. The flow solver was initialized

u*n11 5 A(u*n, n n11/2). (29) with a potential temperature perturbation in the center of a
domain of width 4 km in each direction and Brunt–Väisälä

4. Advance the velocities using the modified trapezoi- frequency N 5 0.01 s21. The perturbation was of the form
dal rule. This requires a Poisson solve for fn11 to ensure
that ui

n11 is nondivergent:
u0 5 A exp S23 S(x 2 xo)2 1 ( y 2 yo)2 1 (z 2 zo)2

R2
0

D1/2D
(33)un11

i 5 A Sun
i 1

Dt
2 Sdi3Bn 2

­fn

­xi
D , nn11/2D

(30)
with A 5 1 K and R0 5 600 m. The total energy oscillates
between potential and kinetic energy as gravity waves are1

Dt
2 Sdi3Bn11 2

­fn11

­xi
D .

radiated throughout the domain. Rigid top and bottom
and periodic lateral boundary conditions are applied, so
the degree to which the total energy remains constant isThis algorithm extrapolates velocities to tn11/2 by reusing

the momentum equation in a manner similar to the algo- an indication of the accuracy of the simulation. For these
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A natural way of implementing refinement is to subdivide
cells by an integer refinement ratio. This allows for easy
adaptation of uniform-grid algorithms because no special
cells are created at grid boundaries. Our multilevel method
uses refinement in time as well as in space. This is necessary
for both stability and accuracy, since we are using an ex-
plicit algorithm for advection. The Courant number of
the flow remains constant when we refine temporally and
spatially by the same ratio.

Our flow solver uses conservation of the global integral
of c to determine the discretization of advected scalars.
On the interior of fine domains, we satisfy this constraint
by prescribing coarse grid values with volume averaging,

cc 5
1
n3 O

i[Vc

cfi , (35)

t(
s)

E(J/m3)
where Vc is the coarse grid cell containing cc and n is the
integer refinement ratio. Conservation in the presence ofFIG. 6. Conservation of energy for a 1003 uniform domain. The

curves are total energy (solid), potential energy (dashed), and kinetic internal interfaces, is enforced by maintaining a relation-
energy (dotted). ship between the coarse and fine fluxes at the grid inter-

face ­V,

simulations, flux-correction was not used, since the scalar F n 5
1
n3 On21

m50
O
i[­V

f n1m
i . (36)

field was sufficiently well resolved by the grid that flux-
correction does not improve the solution. The average

Here Fn is the coarse grid flux and f i
n1m are the fine gridenergies for a 20-min simulation of a 1003 domain are

fluxes. We have found that by using the appropriate coarseplotted in Fig. 6. The total energy of the simulation varied
grid information as image points for the fine domain thatby only 1% despite large energy transfers between kinetic
(36) is approximately preserved. It can be enforced exactlyand potential energy. The second-order convergence of
via refluxing (Berger [6]) which is the addition of a correc-the flow solver can be verified by comparing the accuracy
tive update to Fn.of the energy conservation at several resolutions. This is

similar to the kinetic energy conservation test of Bell and
Marcus [5]. Total energy conservation was found to con-
verge quadratically with increased resolution as shown in
Fig. 7.

4. MULTILEVEL FLOW SOLVER

Modern finite-difference algorithms are generally for-
mulated in conservation form, since a discrete analogue
to a conservation law obeyed by a fluid helps to ensure
that even in regions of rapid change, the numerical scheme
will not produce unphysical results. We used this idea as
the guiding design principle in constructing our multilevel
method. A cell-centered discretization is a natural selection
for implementing this principle. The value at each gridpoint
represents the average of a physical quantity over a rectan-
gular cell and the integral of c over a domain V is given
by a sum over uniform rectangular cells dVi ,

lo
g(

h(
m

))

log(E(J/m3))

FIG. 7. Convergence of total energy for a sequence of uniformE
V

c dV 5 O
i[V

ci dVi . (34)
simulations with mesh spacing h 5 40.0, 44.4, 50, 57.1, 66.7, and 80.0 m.
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Discrete mass conservation was the fundamental motiva-
tion for the multilevel discretization of the velocities. For a
multilevel method, this requires both a method for velocity
restriction of fine to coarse velocities and a method for
interpolating coarse velocities as boundary conditions for
fine internal domains. The MAC grid staggering provides
a simple mass conserving formula for restriction. For a
face ­V of a coarse cell, this formula is given by,

F 5
1
n2 O

i[­V

fi . (37)

Here fi are the fine grid mass fluxes that overlie the coarse
grid mass flux F. This ensures that if mass is conserved
within the fine domain, restriction will preserve this prop-
erty in the underlying coarse domain. Matching coarse and
fine grid mass fluxes at internal boundaries prescribes a

FIG. 8. The initial condition for the smooth multilevel advection test.Neumann boundary condition on the inner grid pressure.
The isosurface is the c 5 0.01 contour.

To satisfy (37) at internal boundaries, we interpolate coarse
velocities, following Clark and Farley [12].

Adaptive refinement has been incorporated into the
error than the highest resolution (1003) uniform simulation.multilevel method. The user can choose to refine the base
The error convergence of the refined simulations impliesgrid, either in fixed regions or using an adaptive refinement
they are second-order accurate and have no more erroralgorithm developed by Berger and Rigoutsos [9]. The
than a uniform grid simulation with the same resolutioncomposite grid is adjusted at a frequency determined by
as the fine grid. This figure illustrates the economy ofan estimate of the maximum Courant number to keep high-
computational resources that can be achieved using localgradient regions within refined regions and to eliminate the
refinement. The coarsest multilevel simulation requiredneed to maintain a large buffer zone in adjacent lower-
only 10% of the computation and 20% of the storage ofgradient regions. Cells are marked as being underresolved
an equivalent uniform simulation.by a user-specified criterion. The marked cells are clustered

into rectangular subdomains by a recursive process that is
repeated until the ratio of marked to total refined cells
exceeds a desired percentage. This is an important consid-
eration for three-dimensional simulations where a refine-
ment ratio of n will create n3 fine cells for every coarse
cell refined.

As an example of the efficiency gain one can achieve
using adaptive multilevel refinement, consider the
‘‘smooth’’ advection test of Section 2, in which a three-
dimensional Gaussian hump of maximum amplitude 1 is
rotated one full revolution around a diagonal axis. Because
the hump is localized, refinement can be concentrated
around the hump. Points were marked for refinement if
they were within a six gridpoint wide buffer zone of scalar
concentrations exceeding 0.01, and the composite grid was
adjusted every six timesteps. A single level of refinement
was used with a refinement ratio of two. Figure 8 shows
the grid configuration for the initial condition of a 603 base
domain. Figure 9 compares the 1-norm error after a full log(h)

lo
g(

(e
( 1)

revolution between adaptively refined simulations and uni-
FIG. 9. Comparison of error convergence for the smooth advection

form grid simulations of varying resolutions. Each refined test for a sequence of uniform resolution simulations (U) with resolution
simulation is plotted at the fine mesh grid spacing h. We ranging from 603 to 1003 and a sequence of adaptive simulations (A) with

base domain resolutions ranging from 603 to 1003.found that the coarsest refined simulation had a lower
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other advection methods. It is conservative and fully sec-
ond-order accurate, including the treatment of source
terms. Like other forward-in-time methods, it can be made
monotonic using flux correction. This is particularly conve-
nient for MU, since the scheme is implemented by adding
corrective fluxes to a multidimensional monotonic low-
order scheme. A substantial advantage over other forward-
in-time schemes is its larger multidimensional stability re-
gion and third-order upwinding. Advection comparisons
have shown that MU allows a one to threefold increase in
the timestep, while retaining a considerable gain in ac-
curacy.

This paper presents and evaluates an adaptive multilevel
flow solver for the anelastic equations, a prototypical low
Mach number flow. The solver is based on MU, but could
easily be used with another forward-in-time advection
scheme. There are no special startup procedures, halfE(J/m3)

t(
s)

timesteps, or temporal filters to control computational
FIG. 10. Comparison of energy conservation between refined and modes. The solver is fully second-order accurate, and is

uniform simulations. The solid curves are uniform 803, 903, and 1003

discretized on a staggered MAC grid. It uses the samesimulations with increasing resolution upwards. The dotted curve is a
advection scheme for momenta as for scalars and requiresrefined 503 simulation.
only one representation of the solution to be stored. These
are substantial advantages over earlier centered, differ-
enced, and hybrid schemes. This paper demonstrates thatThe multilevel performance of the entire flow solver was
this solver can often reduce by an order of magnitudetested by repeating the earlier bubble collapse experiment.
the computational work and storage required to achieveWe used a fine 363 domain covering the initial location of
a given accuracy. We are currently applying our solver tothe bubble, where gradients are sharpest, nested within a
a variety of atmospheric flows that benefit from multilevelcoarse 503 domain with a refinement ratio of two. We
refinement, such as boundary layer cumulus convectioncompared the accuracy of energy conservation with uni-
and turbulent entrainment through highly stratified tem-form domains of 803, 903, and 1003 gridpoints. The total
perature inversions which commonly form above cloud-energy evolution of these simulations is shown in Fig. 10.
topped boundary layers.The small initial differences in total energy reflect the accu-

racy with which the initial disturbance is represented for
APPENDIX: UPWINDING LOGIC FOR MUdifferent grid spacings. During the simulation, the change

in the total energy (and, by inference, the global error) in
The x direction flux for MU can be implemented usingthe nested simulation is comparable to the 803 uniform-

the upwinded locationsgrid simulation. The 803 simulation required tenfold more
flops and storage than the nested simulation. As we will

i* 5 i 1 nint(1/2 2 sign(1/2, nx))show in a forthcoming paper, the errors in energy conserva-
tion can be further reduced to the level of the 1003 uniform j* 5 j 1 nint(1/2 2 sign(1/2, ny)) (38)
simulation by using a composite pressure solver over the

k* 5 k 1 nint(1/2 2 sign(1/2, nz)),full grid at every fine-grid timestep in place of the Neumann
solver used in this work. However, this approximately dou-

where nint( ) and sign( ) are the FORTRAN nearest inte-bles the computation required for the simulation. By using
ger and sign functions. These locations determine the up-nested grid simulations with different coarse-grid spacings
winded finite-differences used. The point ci*, j,k corre-h and the same refinement ratio, we found that the energy
sponds to the upwinded value cp and the compass pointconservation error is proportional to h1.7; i.e., with almost
notation (ce , cw , cn , cs , ct , cb) of Section 2 correspondssecond-order accuracy. This exponent increases to 1.9 if
to the pointsthe composite pressure solver is used.

(ci*11, j,k , ci*21, j,k , ci*, j11,k , ci*, j21 ,k , ci*, j,k11 , ci*, j,k21). (39)5. CONCLUSION

We have developed a forward-in-time multidimensional The flux is computed by first evaluating the altered
Courant numbers,advection method, MU, that compares favorably with
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ey 5 (ny)( j 1 1 2 j*) 1 (1 1 ny)( j* 2 j)
(40)
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